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1 Donsker’s Theorem

1.1 Portmanteau theorem and Donsker’s theorem

Donsker’s theorem shows that Brownian motion can be viewed as a limit of random walks.
Its formulation requires a change of point of view. We have B = (Bt, t ≥ 0) defined on
(Ω,F , P ) = ([0, 1],B,Leb), and given ω ∈ [0, 1], we get a path (Bt(ω), t ≥ 0). This implies
the existence of a probability measure on (C[0,∞), b), where b is the general coordinates
[what is this?]; this measure is called Wiener measure. Wiener measure is the pushforward
of Lebesgue measure under B.

We use P0 for the Wiener measure, denoting Px as the distribution of x + B. This is
nice from the perspective of B as a Markov process, where we want to be able to start from
any state. We need this for continuous analogues of “first step analysis of Markov chains.”

To prove Donsker’s theorem, we state the Portmanteau theorem here.

Theorem 1.1 (Portmanteau). The following are equivalent:

1. Eg(Xn)→ Eg(X) for all uniformly continuous g.

2. Eg(Xn)→ Eg(X) when g is Lipschitz (constant 1).

3. Eg(Xn) → Eg(X) when g = 1G for a Borel set G ⊆ [0, 1] with P (X ∈ ∂G) = 0
(where ∂G is the boundary of G as a metric space).

4. Eg(Xn) → Eg(X) when the set D of discontinuities of g has P (B ∈ D) = 0, and g
is bounded.

Note that Xn
d−→ X =⇒ g(Xn)

d−→ g(X) for all g that have P (X ∈ D) = 0 (even
unbounded g).

Theorem 1.2 (Donsker). The Wiener measure P0 on C[0, 1] is the limit in distribution
of rescaled random walks. More precisely, let Sn = X1 + · · ·+ Xn, with S0 = 0, where the
Xi are independent with EXi = 0 and EX2

i = 1. Construct Bn(t) := Sk/
√
n if t = k/n

and made continuous on [0, 1] by linear interpolation between these n + 1 points.
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Proof. We can see that

1. Bn is a random element of C[0, 1].

2. Bn(t) is a random variable in each t.

3. t→ Bn(t) is continuous.

We must show that Bn
d−→ B. What does this convergence mean? This is weak-*

convergence1 of the measures. C[0, 1] is a metric space with the distance d(f, g) :=
sup0≤t≤1 |f(t)− g(t)|. By the Portmanteau theorem, it is sufficient to show that Eg(Bn)→
Eg(B) for every bounded continuous g : C[0, 1]→ R.

For the rest of the proof, see Durrett or Kallenberg.

1.2 Applications of Donsker’s theorem

We can get nice statements about Brownian motion by treating it as the limit of random
walks.

Example 1.1. Take g(f) := sup0≤t≤1 f(t). The function g is Lipschitz continuous. We
learn that

sup
0≤t≤1

Bn(t)
d−→ sup

0≤t≤1
B(t),

as the left hand side is g(Bn), and the right is g(B). By construction, the left hand side is
max0≤k≤n Sk/

√
n. Note that

Sn√
n

d−→ B(1)

is the Central Limit Theorem.
If k/n→ t as k = kn →∞ and n→∞, then

Sk√
n

d−→
√
tB(1)

d
= B(t).

Donsker’s theorem is often called the “invariance principle.” This is because the limit
does not depend on the distribution of X. This is powerful because you can compute laws
of functionals of B by doing limits for particular random walks.

Example 1.2. It is easy to handle the maximum of a simple random walk. Recall the
reflection principle for a simple random walk. Take Xi = ±1 with probability 1/2 each.
What is P (max0≤k≤n Sk ≥ m)? Consider a path with 0 ≤ Sn = b ≤ m and maximum
Mn ≥ m. We claim that

P (Mn ≥ m,Sn ≥ b) = P (Sn = 2m− b).

1Some people just call this weak convergence.
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This is because we have 2n equally likely paths and a bijection between paths with the left
hand side to paths with the right hand side.

If we sum over b < m, we learn that

P (Mn ≥ m,Sn < m) = P (Mn ≥ m,Sn > m) = P (Sn > m)

These two probabilities plus P (Sn = m) gives us P (Mn ≥ n). So

P (Mn ≥ m)− P (Sn = m) = 2P (Sn > m),

which gives us

P (Mn ≥ m) = 2P (Sn > m) + P (Sn = m) = P (|Sn| > m) + P (Sn = m)

Scale and let n→∞, using |Sn/
√
n| d−→ |B(1)|. This gives us

Mn√
n

d−→ |B(1)| .

By Donsker’s theorem, we get that

sup
0≤t≤1

B(t)
d
= |B(1)| .

Example 1.3. Above, we used the reflection principle for a random walk. In the limit,
this implies a reflection principle for Brownian motion. The same argument gives us(

Mn√
n
,
Sn√
n

)
d−→ (M(1), B(1))

Proof. Take g(Mn√
n
, Sn√

n
) for bounded continuous g. Call this g̃(Bn). This is bounded and

converges in expectation to g applied to the right hand side. By the Portmanteau theorem,
we are done.

This implies that we can evaluate the law of (M(1), B(1)) by random walk limits. For
−∞ < x ≤ y, we can write down

P (B(1) ≤ x,M(1) ≥ y) = P (B(1) ≥ 2y − x).

This statement can be proved in two ways: by the above proof sketch using Donsker’s
theorem or by the reflection principle for Brownian motion. We state the principle here.

Theorem 1.3 (Reflection Principle2). Let Ty := inf {t : Bt = y}. Fix y > 0, and let

B̂(t) :=

{
B(t), t ≤ Ty

y − (Bt − y) y > Ty.

Then B̂
d
= B.

2This was proved by Désiré André in the 1800s. Even back then, people studied the finite dimensional
distributions of Brownian motion.
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